Uncertainty in Machine Learning

“Managing the uncertainty that is inherent in machine learning for predictive modeling can be achieved via the tools and techniques from probability, a field specifically designed to handle uncertainty,” writes Jason Brownlee in A Gentle Introduction to Uncertainty in Machine Learning. In his post, one will learn:

  • Uncertainty is the biggest source of difficulty for beginners in machine learning, especially developers.
  • Noise in data, incomplete coverage of the domain, and imperfect models provide the three main sources of uncertainty in machine learning.
  • Probability provides the foundation and tools for quantifying, handling, and harnessing uncertainty in applied machine learning.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.